
React Lifecycle 
Triggers and Events



Component Lifecycle

• From when a component is invoked to when it is 
destroyed, it goes through a series of lifecycle events


• These functions give you the opportunity to make 
decisions and take appropriate actions.


• There are four triggers that kick off these lifecycle events. 
From these triggers, we will examine the most commonly 
used lifecycle methods.



Lifecycle Event Triggers

• Initialization


• Updating State


• Updating Props


• Unmounting



Trigger: Initialization

• The most commonly used lifecycle events triggered on 
initialization are:


• render() 

• constructor() (if used)


• componentDidMount() (one of the most used 
methods)



Trigger: Initialization

• render() returns the component markup, which can 
be a single child component, a set of components, or 
null or false (in case you don’t want anything rendering)



Trigger: Initialization
• constructor(props) is not necessary if you do not initialize 

state and/or you do not bind methods to a component.


• Called before a component is mounted.


• Should call super(props) if using constructor before any 
other statement, otherwise this.props will be undefined in 
the constructor which can lead to bugs)


• Typically, constructors are used for two purposes:


• Initialize local state by assigning an object to this.state


• Binding event handler methods to an instance



Trigger: Initialization

• componentDidMount() is called once immediately 
after initial rendering has occurred


• The DOM is now available at this point


• This is where you’ll want to use things like 
setInterval(), setTimeout(), and some AJAX 
requests



Trigger: Updating State or 
Props

• The most commonly used lifecycle events triggered on 
Updating State or Props are:


• render() 

• componentDidUpdate()



Trigger: Updating State or 
Props

• componentDidUpdate() has access to three properties, two of 
which are leveraged more than the third:


• prevProps 

• prevState 

• snapshot (rarely used, typically undefined)


• componentDidUpdate() is invoked immediately after updating 
occurs, and is not called for the initial render.


• Use this as an opportunity to operate on the DOM when the 
component has been updated. 



Trigger: Updating State or 
Props

• Can also do network requests as long as you compare 
current props to previous props, as a network request 
may not be necessary if props haven’t changed



Trigger: Updating State or 
Props

• You can call setState() immediately in a 
componentDidUpdate, however make sure to wrap it in a 
conditional statement like in the previous example or you 
can cause an infinite loop.


• Updating state also causes a re-render, which may not be 
visible to the user but could affect the component 
performance.



Trigger: Unmounting

• componentWillUnmount() will be invoked immediately 
before a component is unmounted/removed from the 
DOM


• You can perform any necessary cleanup in this method, 
such as clearing timers, cancelling network requests, or 
cleaning up any subscriptions created in 
componentDidMount().



Resources

• React.Component API: https://reactjs.org/docs/react-
component.html


• Diagram of when lifecycle methods are used, along with a 
toggle to show where less used methods would be used: 
http://projects.wojtekmaj.pl/react-lifecycle-methods-
diagram/

https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/react-component.html
http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/
http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/

