React Lifecycle
Triggers and Events



Component Lifecycle

e From when a component is invoked to when it is
destroyed, it goes through a series of lifecycle events

 These functions give you the opportunity to make
decisions and take appropriate actions.

e There are four triggers that kick off these lifecycle events.
From these triggers, we will examine the most commonly

used lifecycle methods.



Lifecycle Event Triggers

e |nitialization
e Updating State
e Updating Props

e Unmounting



Trigger: Initialization

e The most commonly used lifecycle events triggered on
initialization are:

e render ()

e constructor () (if used)

e componentDidMount () (one of the most used
methods)



Trigger: Initialization

e render () returns the component markup, which can
be a single child component, a set of components, or
null or false (in case you don’t want anything rendering)



Trigger: Initialization

constructor (props) is not necessary if you do not initialize
state and/or you do not bind methods to a component.

Called before a component is mounted.

Should call super (props) if using constructor before any
other statement, otherwise this.props will be undefined in
the constructor which can lead to bugs)

Typically, constructors are used for two purposes:
* |nitialize local state by assigning an object to this.state

* Binding event handler methods to an instance



Trigger: Initialization

e componentDidMount () is called once immediately
after initial rendering has occurred

e The DOM is now available at this point

e This is where you’ll want to use things like
setInterval(), setTimeout (), and some AJAX

requests



Trigger: Updating State or
Props

e The most commonly used lifecycle events triggered on
Updating State or Props are:

e render ()

e componentDidUpdate ()



Trigger: Updating State or
Props

e componentDidUpdate () has access to three properties, two of
which are leveraged more than the third:

® prevProps
® prevState
e snapshot (rarely used, typically undefined)

e componentDidUpdate() Iisinvoked immediately after updating
occurs, and is not called for the initial render.

e Use this as an opportunity to operate on the DOM when the
component has been updated.



Trigger: Updating State or
Props

e Can also do network requests as long as you compare
current props to previous props, as a network request
may not be necessary if props haven’t changed

componentDidUpdate(prevProps) {
// Typical usage (don't forget to compare props):
1f (this.props.userlID !== prevProps.userID) {

this.fetchData(this.props.userlD);
\




Trigger: Updating State or
Props

e Youcancall setState() immediately in a
componentDidUpdate, however make sure to wrap it in a
conditional statement like in the previous example or you
can cause an infinite loop.

e Updating state also causes a re-render, which may not be
visible to the user but could affect the component
performance.



Trigger: Unmounting

e componentWillUnmount () will be invoked immediately
before a component is unmounted/removed from the

DOM

e You can perform any necessary cleanup in this method,
such as clearing timers, cancelling network requests, or
cleaning up any subscriptions created in
componentDidMount ().



Resources

e React.Component API: https://reactjs.org/docs/react-
component.html

e Diagram of when lifecycle methods are used, along with a
toggle to show where less used methods would be used:
http://projects.wojtekmaj.pl/react-lifecycle-methods-
diagram/



https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/react-component.html
http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/
http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/

